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a b s t r a c t

Tissue engineering combined with gene therapy represents a promising approach for bone regeneration.
The Hypoxia-inducible factor-1a (HIF-1a) gene is a pivotal regulator of vascular reactivity and angiogenesis.
Our recent study has showed that HIF-1a could promote osteogenesis of bone mesenchymal stem cells
(BMSCs) using a gene point mutant technique. To optimize the function of HIF-1a on inducing stem cells,
another constitutively active form of HIF-1a (CA5) was constructed with truncation mutant method and its
therapeutic potential on critical-sized bone defects was evaluated with calcium-magnesium phosphate
cement (CMPC) scaffold in a rat model. BMSCs were treated with Lenti (lentivirus) -CA5, Lenti-WT (wild-
type HIF-1a), and Lenti-LacZ. These genetically modified BMSCs were then combined with CMPC scaffolds
to repair critical-sized calvarial defects in rats. The results showed that the overexpression of HIF-1a
obviously enhanced the mRNA and protein expression of osteogenic markers in vitro and robust new bone
formation with the higher local bone mineral density (BMD) was found in vivo in the CA5 and WT groups.
Furthermore, CA5 showed significantly greater stability and osteogenic activity in BMSCs compared with
WT. These data suggest that BMSCs transduced with truncation mutanted HIF-1a gene can promote the
overexpression of osteogenic markers. CMPC could serve as a potential substrate for HIF-1a gene modified
tissue engineered bone to repair critical sized bony defects.

� 2011 Published by Elsevier Ltd.

1. Introduction

Due to inflammatory disease, trauma, and anatomical or
congenital conditions, bone defects are quite common and pose
a substantial clinical and biomedical burden. Researches in tissue
engineering have shown that tissue engineering combined with
gene therapy represents a promising approach for bone regenera-
tion [1]. The previous experiments demonstrate that many factors,
such as bone morphogenic protein (BMP), vascular endothelial

growth factor (VEGF), and fibroblast growth factor (bFGF), can
stimulate osteogenesis and angiogenesis in bone defects using local
gene therapy method [2,3].

Some studies have reported that hypoxia-inducible factor-1a
(HIF-1a) could promote the expression of angiogenic genes. HIF-1a
has widely been regarded as a critical regulator during angioge-
niceosteogenic coupling [4]. Hypoxia-inducible factor (HIF)-1 is
a transcription factor that mediates the adaptation of many multi-
cellular organisms to molecular oxygen [5]. It includes two
subunits: O2-regulated a and constitutively-expressed b. HIF-1a is
the specific subunit of HIF-1 that determines its biological activity
[6]. Several hundreds of genes have been determined to be regu-
lated directly by HIF-1, including VEGF and stromal-derived factor 1
(SDF-1) [7]. Hydroxylation of proline residues 402 and 564 and
asparagine residue 803 in HIF-1a regulates protein stability and
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transactivation function in an O2-dependent manner [5,8e11].
Based on these data, Lenti-CA5, a lentivirus encoding amutant form
of HIF-1a, was constructed in this study. Truncation mutant was
made by a deletion (amino acids 392e520) and two substitutions
(Pro567Thr and Pro658Gln). Lenti-CA5 is resistant to O2-dependent
degradation and maintains constitutive activity under non-hypoxic
conditions [12]. As multipotent stem cells, bone marrow-derived
mesenchymal stem cells (BMSCs) are ideal seed cells for Tissue
engineering [11]. In many previous reports, many factors can
enhance mesenchymal stem cells (MSCs) osteogenesis and angio-
genesis, such as BMP, runt-related transcription factor 2 (Runx2),
and VEGF [13e15]. HIF-1a, as an upstream gene that regulates their
transcription, has many advantages including vascular remodeling
and bone repair compared with the above genes. Our previous
study has indicated that point mutant HIF-1a (proline 564 to
alanine, proline 402 to alanine and aminosuccinic acid 803 to
alanine) could increase BMSC expression levels of osteogenic genes
in vitro in the normoxic condition [16]. To optimize the function of
HIF-1a on inducing stem cells, CA5 (a constitutively active form of
HIF-1a) was constructed with truncation mutant method to verify
whether the CA5 modified BMSCs could achieve an enhanced
activity of osteogenesis in tissue engineering in this study?

As a key factor for bone tissue engineering, scaffold should
provide sufficient mechanical support and a three-dimensional
space for cell proliferation, osteogenic differentiation, and conse-
quent bone formation in vivo [17,18]. Comparing to organic scaffold
material, such as a collagen and gelatin scaffold, nonorganic scaf-
fold material including CPC, b-TCP, usually possesses sufficient
mechanical strength and stiffness to enable stress transfer and load
bearing [19]. Among those nonorganic scaffolds, calcium phosphate
biomaterials have beenwidely used in clinical applications because
of their excellent biocompatibility and osteoconductivity [20,21].
Comparing to calcium phosphate cement (CPC, low biodegradation
rate [22,23]), calciumemagnesium phosphate cement (CMPC) was
fabricated by incorporating magnesium oxide into CPC to improve
both mechanical and degradation properties [24,25]. Besides,
magnesium added in CPC may enhance osteoblast adhesion, and
thus directly stimulate osteoblast proliferation, and indirectly
influence new bone formation [26]. CMPC exhibits good biocom-
patibility, biodegradability and osteoconductivity [27].

Based on the above knowledge, applying a combination of CMPC
scaffolds and BMSCs modified by Lenti-CA5 treatment appears to be

apromisingapproachtorepairbonedefect. In thispaper,wetested the
hypothesis that CA5 gene therapy could be used to promote the repair
of critical-sized defect (CSD) in a rat skull model using CMPC scaffold.

2. Materials and methods

2.1. Isolation and culture of rat BMSCs

Animal use was compliant with official Chinese guidelines and was assessed by
the local Internal Evaluation Committee for Animal Welfare and Rights. Total BMSCs
were isolated from a 6-week-old male Fisher 344 rats with a weight of 50 g � 5 g
according to the protocol reported by Xinquan Q1Jiang et al. [28]. Briefly, primary cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco BRL, Grand
Island, NY, USA) containing 10% FBS and 100 units/mL penicillin for 5 days. The
medium was then changed and was renewed three times a week. When 90%
confluence was reached, BMSCs were released from the culture substratum using
trypsin/EDTA (0.25% w/v trypsin, 0.02% EDTA) and moved to dishes (10 cm in
diameter) at 1.0 � 105 cells/mL in 10 mL at 37 �C in an atmosphere of 5% CO2. Flow
cytometry was used to characterize BMSCs with CD90, CD105, CD31, and CD34
staining (Invitrogen, Carlsbad, California, USA).

2.2. Lenti-CA5 construction and BMSCs gene transduction

Lenti-WT is a replication-defective lentivirus that encodes enhanced green
fluorescent protein (EGFP) and HIF-1a. The HIF-1a in Lenti-CA5 is constitutively
active as a result of a deletion (amino acids 392e520) and two substitutions
(Pro567Thr and Pro658Gln), as previously described [7]. Large-scale lentiviral
productionwas performed in the Shanghai R&S Biotechnology Co., Ltd.. BMSCs were
exposed to 15MOI of Lenti-WT, Lenti-CA5, or EGFP-encoding lentiviral vector (Lenti-
LacZ) for 24 h in the presence of polybrene (8 mg/mL). Transduction efficiency, which
was assessed by counting the number of EGFP-positive cells after 4 days of culture.

2.3. Real-time quantitative RT-PCR analysis

Total cellular RNA extraction of BMSCs was performed on days 0, 1, 4, 7, 14, and
21 after gene transduction with an RNeasy Mini kit (Qiagen, Germany). The quality
and quantity of the RNA obtained were checked by spectrophotometric analysis
using the biophotometer (Eppendorf biophotometer plus). According to the
manufacturer’s recommendations, reverse transcription was finished with 1 mg of
total RNA in a final volume of 20 mL, using a PrimeScript RT reagent kit (Takara Bio,
Shiga, Japan). The relative expression of each target mRNA was calculated using the
comparative DCt method with 18S rRNA as the reference [29]. The gene-specific
primers were synthesized commercially (Shengong Co., Ltd., Shanghai, China), and
the genes, accession numbers, primer sequences, and amplicon sizes are listed in
Table 1. All values were normalized to GAPDH. All experiments were performed in
triplicate; results are reported as the average � SD.

2.4. Western blotting analyses

Cells (1.0 � 105/well) were seeded onto 6-well plates 1 day before transduction.
Total proteinwas harvested from cultured cells on days 0,1, 4, 7, 14, and 21 after gene

Table 1
Nucleotide sequences for real-time RT-PCR primers.

Genes Primer sequence (50-30)
(Forward/reverse)

Product
size (bp)

Annealing
temperature (�C)

Accession
number

Osteonectin CCCTACTATGTCGCTTTCTTGG
GTTTCTGCTGCCTTGTATGGG

199 60 NM_001530.3

Glut1 GCTTCCTGCTCATCAATCGTAAC
TCATCTGCCGACCCTCTTCT

168 60 NM_138827.1

COLI TCCTGCCGATGTCGCTATC
CAAGTTCCGGTGTGACTCGTG

234 58 XM_213440

OCN CAGTAAGGTGGTGAATAGACTCCG
GGTGCCATAGATGCGCTTG

172 60 NM_013414.1

BMP-2 GCGTGCTTCTTAGACGGACTG
CGTCAGAGGGCTGGGATG

158 60 NM_017178.1

BSP TGGATGAACCAAGCGTGGA
TCGCCTGACTGTCGATAGCA

162 60 NM_012881.2

ALP GTCCCACAAGAGCCCACAAT
CAACGGCAGAGCCAGGAAT

172 60 NM_013059.1

Cbfa1 TCTTCCCAAAGCCAGAGCG
TGCCATTCGAGGTGGTCG

154 60 NM_053470.1

OPN TGGATGAACCAAGCGTGGA
TCGCCTGACTGTCGATAGCA

168 60 NM_012881.2

GAPDH GGCAAGTTCAACGGCACAGT
GCCAGTAGACTCCACGACAT

76 60 NM_017008.3
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transduction. The procedure was performed according to standard protocols. Briefly,
after cells lysed, protein concentrations were measured using the DC protein assay
kit (Invitrogen, Carlsbad, California, USA). Equal amounts of cell lysates were sepa-
rated on duplicate 8e10% SDS-PAGE gels and transferred to a polyvinylidene
difluoride (PVDF) membrane (0.45 mm, Millipore, Bedford, MA). The membranes
were incubated with specific primary antibodies (HIF-1a, Abcam, Inc., Cambridge,
UK) overnight at 4 �C at a 1:600 dilution. The membranes were then washed three
times with TBS containing 0.1% tween-20 detergent and incubated for 2 h with HRP-
conjugated secondary antibodies. Protein bands were visualized using the Enhanced
Chemiluminescence system (Amersham Pharmacia Biotech Inc., USA) and Kodak X-
OMAT film (Rochester, New York, USA). The same procedure was used for antibodies
against other proteins, including BMP-2, osteocalcin (OCN), osteopontin (OPN), and
sialoprotein (BSP) (Abcam, Inc., Cambridge, UK). Relative protein levels were
normalized against b-actin. All experiments were performed in triplicate. Results are
reported as the mean � SD.

2.5. Alkaline phosphatase activity and alizarin red-S staining

BMSCs/Lenti-WT, BMSCs/Lenti-CA5, or BMSCs/Lenti-LacZ were plated on 6-well
plates at a density of 1.0� 105 cells/well and were cultured in DMEM until they were
confluent. Next, they were evaluated for alkaline phosphatase (ALP) activity and
Alizarin Red-S Staining (ARS) on days 14 and 21 after transduction. The semi-
quantitative analyses of ALP and ARS were performed following an established
protocol [30]. Briefly, after cells lysed, the total protein content of these samples was
determined using the BCA method with a protein assay kit (Rockford, III). ALP
activity was determined at 405 nm using p-nitrophenyl phosphate (pNPP) (Sig-
maeAldrich, St. Louis, Mo. USA) as the substrate. For ARS measurements, after cells
werewashed and fixed, the samples were then stained with ARS (40mM) for 20min
at room temperature. The stain was desorbed with 10% cetylpyridinium chloride
(SigmaeAldrich, St. Louis, Mo. USA) for 1 h. The solution was collected and
distributed at 100 mL/well on a 96-well plate, and absorbance readings were taken at
590 nm using a spectrophotometer (Thermo Spectronic, California, USA). Finally,
ALP and ARS levels were normalized to the total protein content. All experiments
were conducted in triplicate.

2.6. Preparation of BMSCs/CMPC constructs

CMPC scaffolds (East China University of Science and Technology, Shanghai,
China) were molded into cylinders (V 5 mm � 2 mm3) and sterilized by 60Co irra-
diation before use. The scaffolds had an average pore size of 400 mm � 50 mm and
75% porosity. For cell seeding, BMSCs were detached from culture dishes, centri-
fuged to remove supernatant, and then resuspended in the serum-free DMEM at
a density of 2.0 � 105 cells/mL. Cells in suspension were slowly added to the CMPC
cylinder till final saturation. After incubation for an additional 4 h to allow for cell
attachment, the scaffolds were used as described in next section.

In a parallel experiment, 3mm� 3mm� 3mmcuboidswere prepared and seeded
with BMSCs at an identical cell density. At the 4 h and 24 h time points, the constructs
were fixed in 2% glutaric dialdehyde for 2 h, cut into two halves, and then characterized
by scanning electron microscopy (Philips SEM XL-30, Amsterdam, Netherlands).

2.7. Animal experiments

All procedures were approved by the Ninth People’s Hospital Affiliated with
Shanghai Jiao Tong University Committee on the Use and Care of Animals. Surgical
procedures were performed on a 12-week-old male Fisher 344 rats, as described
previously [31]. Briefly, the animals were anaesthetized by intraperitoneal injection of
pentobarbital (Nembutal 3.5 mg/100 g). A 1.0- to 1.5-cm sagittal incisionwas made on
the scalp, and the calvariumwas exposed by blunt dissection. Two critical-sized defects
were createdbymeansof a5-mmdiameter trephinebur (Fine ScienceTools, FosterCity,
CA, USA). Twenty-four rats with two critical-sized calvarial defectswere generated and
randomly allocated into the following graft study groups: (1) CMPC (n ¼ 6); (2) CMPC
with BMSCs/Lenti-LacZ (n¼ 6); (3) CMPCwith BMSCs/Lenti-WT (n¼ 6); and (4) CMPC
with BMSCs/Lenti-CA5 (n ¼ 6). The incisionwas closed in layers using 4e0 resorbable
sutures. The rats were able to function normally after this procedure.

2.8. Sequential fluorescent labeling

The polychrome sequential labeling of mineralizing tissues was performed
according to a previous report [32]. At 1, 4, and 7 weeks after the operation, the
animals were subjected to intraperitoneal injection of fluorochromes under ether
anesthesia as follows: tetracycline hydrochloride (1 mg/kg body weight, TE, Sig-
maeAldrich, St. Louis, Mo. USA), calcein (1% in 2% NaHCO3 solution, 5 mL/kg body
weight, CA, SigmaeAldrich, St. Louis, Mo. USA), Alizarin Red-S (3% in 2% NaHCO3

solution, 0.8 mL/kg body weight, AL, SigmaeAldrich, St. Louis, Mo. USA).

2.9. Radiography and micro-CT measurement

At 8 weeks post-operation, all the rats were sacrificed by an intraperitoneal
overdose injection of pentobarbital. The skulls were then explanted and fixed in 4%

phosphate-buffered formalin solution. X-ray images of skulls were made with
a Kodak In-Vivo Imaging System FX Pro. Calvarial samples were placed near the
center of the FOV of the phosphor screen. X-ray images were acquired using
radiographic screens.

Themorphology of the reconstructed skulls was assessed using an animalmicro-
CT scanner (eXplore Locus, GE Healthcare Biosciences, London, UK). As previously
reported [33], briefly, the specimens were scanned with some parameters, including
an X-ray tube potential of 80 kV, a tube current of 0.45 mA, and 15-mm voxel reso-
lution. After micro-CT scan, the visualization of bone was made with software of
three-dimensional isosurface renderings. Micro-CT measurements included bone
mineral densities (BMDs) and the trabecular thickness (Tb.Th) in the bone defect.

2.10. Histological and histomorphometric observation

The samples were fixed in a 5% neutral buffered formalin solution. The
undecalcified specimens of 12 rats (half of the specimens for each group, n ¼ 6)
were dehydrated in ascending concentrations of alcohols from 75% to 100% and
finally embedded in polymethymetacrylate (PMMA). The orientation of the
sections was selected on the sagittal surface in each animal. Three sections,
representing the central area of each defect, were used for the histometric
analysis. The specimens were cut in 150 mm thick sections using a microtome
(Leica, Hamburg, Germany) and were subsequently polished to a final thickness
of about 40 mm [34]. Sections were observed for fluorescent labeling using
a confocal laser scanning microscope (CLSM) (Leica TCS Sp2 AOBS, Heidelberg,
Germany). The excitation/emission wavelengths of the chelating fluorochromes
used were 405/560e590 nm (tetracycline, yellow), 488/500e550 nm (calcein,
green), 543/580e670 nm (Alizarin Red-S, red) respectively [35]. Then the
sections were stained with Van Gieson’s picro fuchsin for histological observa-
tion. To analyze mineralization in the skull, the fluorochrome staining of the new
bone was quantified using the methodology of Wang et al. [36]. The microscope
images were stored digitally and then evaluated histomorphometrically using
a picture-analysis system (Image-Pro PlusTM, Media Cybernetic, Silver Springs,
MD, USA). Using this system, the number of pixels labeled with each fluoro-
chrome in each image was determined as a percentage of the mineralization
area. This analysis was performed separately for yellow (tetracycline, TE), green
(calcein, CA), and red (Alizarin Red-S, AL). The data on tetracycline, calcein and
Alizarin Red-S staining represent the bone regeneration and mineralization 1, 4,
and 7 weeks post-operation.

The measurements on areas of newly formed bone and remnant scaffold were
quantified using a personal computer-based image analysis system (Image Pro 5.0,
Media Cybernetic, Silver Springs, MD, USA) and reported as a percentage of the
whole bone defect area.

2.11. Immunohistochemistry

The samples of anotherhalf of each group (n¼6)were decalcified in 10% EDTA for
2 weeks. Samples were embedded in paraffin, and serial coronal cross sections were
made. Immunohistochemistry was performed as previously described [28]. Briefly,
the tissue slides were dewaxed and rehydrated, after which endogenous peroxidase
activitywasblockedusing3% (w/v)hydrogenperoxide (H2O2) inmethanol for 30min,
and slideswere blockedusing the avidin/biotin blocking kit (Vector Laboratories, Inc.,
Peterborough, UK) and incubation in Tris Buffered Saline (TBS), supplemented with
5% BSA and 20% normal serum (NS). Primary antibodies against GFP and HIF-a (1:100
dilution) (Abcam, Inc., Cambridge, UK) were diluted in 5% BSA/TBS and applied to the
sections at 4�Covernight. The biotinylated secondary antibody (Boster Co. Ltd.,
Shanghai, China) was applied to the slides for 30 min at room temperature. Then,
streptavidin biotin complex (Boster Co. Ltd., Shanghai, China) was incubated for
20 min. Staining was performed by DAB substrate (DAKO, Cambridge, UK), and the
slides were counterstained with hematoxylin and mounted.

2.12. Statistical analysis

All data are presented as the mean � SD. Using the software SPSS 10.0 (SPSS
Science), statistical significance was assessed by a Tukey’s post-hoc test of ANOVA. A
P-value < 0.05 was considered statistically significant (*P < 0.05 and **P < 0.01,
target gene (WT or CA5) groups compared with the control group; #P < 0.05 and
##P < 0.01, the CA5 group compared with the WT group).

3. Results

3.1. Cell culture and characterization of BMSCs

After rat bone marrow was extracted, it was cultured in
uncoated dishes in DMEM with 10% FBS to isolate BMSCs. By
passages 3e5, BMSCs were detached, and then the flow cytometry
was analyzed. As previously described for MSCs [37], BMSCs
showed high expression of CD90 and CD105, whereas myeloid
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endothelial cell marker CD31 and hematopoietic marker CD34
were rarely detected (Supporting Information, Fig. S1).

3.2. Gene transduction and HIF-1a expression

After CA5 mutation (Supporting Information, Fig. S2), Lenti-WT
and Lenti-CA5 were produced. For optimal multiplicity of infection
(MOI), a set of preliminary experiments was performed using
various doses of lentivirus. Finally, we found that a MOI of 15
resulted in optimal transduction efficiency without excessive cell
death in vitro. Four days after transduction, approximately 90% of
BMSCs were observed to be green using inverted fluorescence
microscopy (Supporting Information, Fig. S3). Overexpression of
HIF-1a was detected in the Lenti-WT and Lenti-CA5 groups by RT-
PCR and western blotting (Fig. 1).

3.3. RT-qPCR and western blot analysis of osteogenic markers

To detect expression of osteogenic genes in BMSCs, RT-qPCR
was carried out on days 0, 1, 4, 7, 14, and 21. Levels of pivotal
osteogenic factors were obviously different among the various
groups. In target gene-transduced BMSCs, the expression of BMP-
2 and Cbfa1, which are regarded as important factors in regu-
lating bone formation, was increased markedly on day 4 and
improved continuously from day 7 to day 21 (Fig. 2A and B).
BMP-2 displayed remarkably increase in the HIF-1a-transduced
groups. Other pivotal osteogenic genes such as ALP, OCN, OPN,
and Glut1 showed the same tendency as BMP-2 and Cbfa1

(Fig. 2CeE and H). However, BSP and type I collagen (COLI)
demonstrated notable upregulation from day 7 (Fig. 2F and G).
Furthermore, osteonectin was not upregulated until later, on day
14 (Fig. 2I). In comparison, the transcripts of osteogenic markers
in the LacZ group remained at a low level after 21 days. Taken
together, these data support the presence of an osteoinductive
effect induced by CA5.

To detect protein expression of osteogenic factors in the gene-
modified BMSCs, we chose four pivotal factors. The results of
analyzing various protein levels were in accordance with the qPCR
data (Fig. 3A). After gene transduction, BMP-2 was detected on days
0, 1, 4, 7, 14, and 21 in the Lenti-WT-, Lenti-CA5-, and LacZ-
transduced groups. Quantitative analysis revealed an 8- to 10-fold
increase in the Lenti-WT- and Lenti-CA5-transduced groups
(Fig. 3B-a). In addition, we investigatedwhether OCN, OPN, and BSP
were also upregulated via the HIF-1 pathway. The results showed
that the expression of OCN was increased 3- to 4-fold in the target
gene-transduced group compared to the LacZ group (Fig. 3B-b).
Similar results were observed for OPN and BSP (Fig. 3B-c and d).
These data indicated that CA5 could enhance the expression of
osteogenic proteins in BMSCs in vitro.

3.4. ALP and ARS

Lenti-WT-, Lenti-CA5-, and LacZ-transduced BMSCs were
plated on 6-well plates (105 cells/well). On days 14 and 21 after
gene transduction, ALP staining was obviously enhanced in target
gene-transduced groups (Fig. 4A). Furthermore, ARS staining on

Fig. 1. The protein expression of HIF-1a was determined using western blot. BMSCs transduced with Lenti-WT and Lenti-CA5 produced a higher level of HIF-1a compared with
Lenti-LacZ-transduced BMSCs (**P < 0.01, target gene groups compared with the control group; ##P < 0.01, the CA5 group compared with the WT group).
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day 21 revealed a significant increase in calcium deposition
(Fig. 4C). The semi-quantitative analysis showed that ALP activity
in Lenti-WT or Lenti-CA5 groups was 3.2-fold greater than the
control group on day 21. There was also a statistical difference
between the Lenti-WT and Lenti-CA5 groups (Fig. 4B). In addition,
the semi-quantitative analysis of ARS agreed with the result for
ALP (Fig. 4D). However, there was no statistical difference between
the Lenti-WT and Lenti-CA5 groups until day 21. All these results
proved that HIF-1a could promote the differentiation of BMSCs
into osteoblastic cells.

3.5. Adhesion of BMSCs on scaffold and the implant procedure

The CMPC scaffold was evaluated by scanning electron micro-
scope (Supporting Information, Fig. S4A). 24 h after the BMSCswere
combined with the material, cells attached to the surface of the
scaffold in vitro (Supporting Information, Fig. S4B). Nominal
differences in cellular adhesion and proliferation were observed

between BMSCs transduced with LacZ, WT, CA5, and untransduced
BMSCs. After 4 h the scaffolds combined with BMSCs, the
compounds (CMPC; CMPC with BMSCs/Lenti-LacZ; CMPC with
BMSCs/Lenti-WT; and CMPC with BMSCs/Lenti-CA5) were placed
into the critical-sized calvarial defects (Supporting Information,
Fig. S4C and D).

3.6. Radiographic analysis and micro-CT measurement

To observe new bone formationwithin the defects, X-ray images
were taken at 8 weeks after explantation of the skull. Representa-
tive photographs of each group are shown in Fig. 5A. Radiographic
evidence of new bone formation was highly variable among the
four groups. In the Lenti-WT and Lenti-CA5 groups, new bone
formation was seen, and the appearance of the implant became
smoother and more radiopaque. However, there were more radi-
otransparent areas in the CMPC and Lenti-LacZ groups, especially
the CMPC group.

Fig. 2. Detection of mRNA expression of osteogenic markers in rat BMSCs. mRNA expression of BMP-2 (A) Cbfa1 (B) ALP (C) OCN (D) OPN (E) BSP (F) COLI (G) Glut1 (H) and
osteonectin (I) (*P < 0.05 and **P < 0.01, target gene groups compared with the LacZ group; ﹟P < 0.05 and ##P < 0.01, the CA5 group compared with the WT group).
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The morphology of the newly formed bone was reconstructed
using micro-CT. The results were nearly in conformity with the X-
ray images. From coronal to sagittal, micro-CT showed that the new
bone formation in the target gene groups was greater than that in

the LacZ or CMPC groups at 8 weeks post-operation (Fig. 5B). The
quantity of the newly formed bone in the defect sites was calcu-
lated by morphometrical analysis. Significantly greater BMD was
observed in the Lenti-WT- and Lenti-CA5-transduced BMSCs

Fig. 3. Expression of osteogenic markers was detected bywestern blot. (A) Grayscale scan showed that after gene transduction, BMP-2, OCN, OPN, and BSP proteins were expressed in
BMSCs on days 0,1, 4, 7,14, and 21. (B) Scan Image software detected gray values of the BMP-2, OCN, OPN, and BSP proteins band at different time points. All values were normalized to
b-actin (*P < 0.05 and **P < 0.01, target gene groups compared with the LacZ group or CMPC group; ﹟P < 0.05 and ##P < 0.01, the CA5 group compared with the WT group).
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groups (Fig. 5C). Tb.Th of the Lenti-WT- and Lenti-CA5-transduced
BMSCs groups were also higher than in the other two groups
(Fig. 5D).

3.7. Fluorochrome labeling histomorphometrical analysis

New bone formation and mineralization were determined his-
tomorphometrically by TE, CA, and AL fluorescent quantification,
which represented the mineralization level at different time
periods. At 1 week, the percentage of TE labeling (yellow) in the
Lenti-WT group was 3.18 � 0.43%, which was greater than the
percentage in the CMPC group of 1.69 � 0.51% or the LacZ group of
1.82� 0.54%, but less than the percentage in the Lenti-CA5 group of
4.57 � 0.87% (P < 0.01; Fig. 6A-a1, b1, c1, d1, and B). At 4 weeks, the
percentage of CA labeling (green) was 1.62 � 0.38%, 2.0 � 0.49%,
9.24 � 1.24%, and 10.67 � 1.54%, for Groups CMPC, LacZ, WT, and
CA5 respectively (Fig. 6A-a2, b2, c2, d2, and B). There were signif-
icant statistical differences between Groups WT and LacZ or CMPC
(P < 0.01) and between Groups CA5 and LacZ or CMPC (P < 0.01),
but no significant difference between Groups WT and CA5
(P > 0.05) (Fig. 6B). At 7 weeks, the percentage of AL labeling (red)
was 2.25 � 0.66%, 1.98 � 0.74%, 5.05 � 0.83%, and 7.51 � 1.42%
respectively (Fig. 6A-a3, b3, c3, d3, and B), with no significant

differences between groups WT and CA5 (Fig. 6B). Taken together,
these data indicated that the Lenti-WT and Lenti-CA5 groups could
effectively promote new bone formation and mineralization
compared with the Lenti-LacZ and CMPC groups. However, there
were no significant differences between groups WT and CA5 or
between LacZ and CMPC.

3.8. Histological analysis of bone regeneration

Histological evidence of the undecalcified specimens further
supported the radiographic and fluorochrome labeling histo-
morphometrical findings (Fig. 7A). Under light microscopy, the
percentage of new bone area after 8 weeks was 25.31�5.16% in the
CA5 group, 23.78 � 5.87% in theWT group, 8.63 � 7.25% in the LacZ
group, and 7.41 � 3.54% in the CMPC-alone group, respectively
(Fig. 7B). The percentage of remnant scaffold area was
24.52% � 2.41% in the CA5 group, 26.76% � 2.51% in the WT group,
29.61 � 2.74% in LacZ group and 33.73% � 2.63% in scaffold-alone
group respectively (Fig. 7C).

Concerning the presence of the implanted BMSCs in the defect
sites, GFP immunohistochemistry was adopted, because all Lenti-
LacZ, Lenti-WT and Lenti-CA5 lentivirus encodes enhanced green
fluorescent protein (EGFP). GFP was apparent in the new bone

Fig. 4. Analysis of ALP and ARS staining. ALP expression on days 14 and 21 (A) Semi-quantitative analysis of ALP activity (B) The results of ARS staining (C) Semi-quantitative analysis
of ARS (D) (*P < 0.05 and **P < 0.01, target gene groups compared with the LacZ group or CMPC group; ﹟P < 0.05 and ##P < 0.01, the CA5 group compared with the WT group).
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matrix or fibrous tissue in the WT-, CA5- and LacZ-transduced
BMSCs groups (Fig. 8a) 8 weeks post-operation, while negative
staining was found in the CMPC group. Immunohistochemistry
displayed intensive HIF-1a staining in cells both the bone matrix
and the surrounding fibroblastic-like tissue for samples treated
with the Lenti-WT and Lenti-CA5-transduced BMSCs (Fig. 8b),
whereas in Lenti-LacZ-transduced BMSCs and the scaffold-alone
groups, there was no obvious positive staining for endogenous
HIF-1a.

4. Discussion

The combination of tissue engineering and gene therapy is
a promising strategy for bone regeneration [1]. This study investi-
gated a therapeutic strategy based on CA5-transduced BMSCs in
healing a critical-sized cranial defect with CMPC scaffold.

Many studies have demonstrated that the HIF-1a protein is
subject to degradation under normoxic conditions [38]. To effec-
tively maintain the stability and activity of HIF-1a under non-
hypoxic conditions, a constitutively active form of HIF-1a was
constructed. To prevent HIF-1a proline residues 402 and 564 from
hydroxylation and degradation, we made a deletion (amino acids
392e520) and two substitutions (Pro567Thr and Pro658Gln). The
deletion stabilized HIF-1a by preventing it from combining with
von Hippel-Lindau protein (VHL) and being degraded. Mutating
proline residue 567 to threonine and proline residue 658 to gluta-
mine enhanced HIF-1a binding to the transcriptional co-activators
CBP and p300 to effectively maintain activity in normoxic condi-
tions. The mRNA and protein expression of HIF-1a in BMSCs
transducedwith Lenti-CA5 achieved the greatest value among three
groups in vitro. These data supported that CA5 could effectively
maintain the stability and activity of HIF-1a in normoxic conditions.

Fig. 5. Radiography and micro-CT evaluation of the repaired skull at 8 weeks after implantation. CMPC constructs, Lenti-LacZ-transduced BMSCs/CMPC constructs, Lenti-WT-
transduced BMSCs/CMPC constructs, and Lenti-CA5-transduced BMSCs/CMPC constructs (from left to right). Representative photographs showed large defined radiopacities at
the defect sites (A). Micro-CT images of calvarial defects taken 8 weeks after implantation (B). Morphometric analysis of the local bone mineral density in the new bone formation
area (C) and the trabecular thickness (D). There were significant differences between the target gene groups and the CMPC or Lenti-LacZ groups (*P < 0.05, target gene groups
compared with the LacZ group or CMPC group).
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Some studies have suggested that HIF-1a might play important
roles in bone formation [4]. HIF-1a is expected to be beneficial
when used in gene-modified stem cells for bone regeneration since
it belongs to a gene upstream of some factors, including VEGF, SDF-
1, TGF-b, and Clut1 [39,40]. To test our hypothesis, the mRNA
expression levels of a few key osteogenic factors and the protein
expression of four important osteogenic factors were detected in
gene-modified BMSCs in vitro. Our results demonstrated that Lenti-
WT and Lenti-CA5 could induce the overexpression of these oste-
ogenic genes in vitro even in a normoxic state. BMP-2 and Cbfa1,
both regarded as key osteogenic factors with the strongest and

most significant biological activities which are effective in
enhancing bone formation in a variety of animal studies [41], were
remarkably upregulated in target gene-treated BMSCs groups at
both mRNA and protein levels. In particular, the expression of BMP-
2 showed the greatest response, with 30- to 67-fold increases on
day 21. This tendency showed that HIF-1a can induce significant
osteogenesis of BMSCs in vitro. Moreover, other important factors,
such as ALP, Glut1, COLI, osteonectin, OCN, OPN, and BSP, were also
significantly upregulated in target gene-transduced groups. The
results of ALP and ARS confirmed that CA5-overexpressing BMSCs
could induce osteogenesis in vitro under non-hypoxic conditions.

Fig. 6. New bone formation and mineralizationwas determined histomorphometrically by TE, CA, and AL fluorescent quantification, which represented the mineralization level at 8
weeks after operation (A). Parts a, b, c, and d represent confocal LASER microscope for each group. Parts a4, b4, c4, and d4 represent merged images of the three fluorochromes for
the same group. Parts a5, b5, c5, and d5 represent the merged images of the three fluorochromes together with the plain confocal laser microscope image for the same group; (B)
The graph shows the percentage of each fluorochrome area for different groups. There were significant differences between the Lenti-WT or Lenti-CA5 groups and the CMPC or
Lenti-LacZ groups (**P < 0.01, target gene groups compared with the LacZ group or CMPC group).
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Comparing to the function of point mutant HIF-1a on BMSCs pre-
sented in our previous publication [16], CA5 demonstrated higher
stability of HIF-1a in normoxic conditions, at both mRNA and
protein levels. Furthermore, the expression of osteogenic markers
was stronger in the CA5 group than that of point mutant group
including BMP-2, Cbfa1, and OCN. These data suggested that the
truncation mutant HIF-1a gene-modified BMSCs achieved better
osteogenic function than that of point mutant HIF-1a in vitro we
previously presented. This lead us to further explore its effects in
bone repair in animal models.

Lenti-WT and Lenti-CA5 BMSCs were combined with CMPC
scaffold to repair bone defects in a critical-sized cranial defect rat
model. Due to the advantages in shorter setting time, biocompati-
bility, and markedly better mechanical properties, CMPC has been
regarded as a promising scaffold for bone regeneration [42]. The
study showed that Lenti-WT and Lenti-CA5 treatment could
significantly improve ossification in calvarial models through the

application of BMSCs. Radiological evaluation revealed that the
wild-type and the truncationmutant HIF-1a-transduced cells could
enhance the repair of the defect area. In contrast, only slight new
bone formation was observed in the LacZ and CMPC groups.
Quantitative analysis by micro-CT revealed newly formed bone in
the target gene-transduced groups was much higher than that in
the control group at both BMD and Tb.Th. However, CA5 group
achieved the greatest effect of bone repair among four groups. In
consistent with the above findings, histological examination
demonstrated that newly formed bone completely covered the
defect area with the implantation of CA5-transduced BMSCs, while
there was only limited new bone formation in the control group.
The percentage of new bone area was the largest in the CA5 group
(25.31 � 5.16%) comparing to the WT group (23.78 � 5.87%), the
LacZ group (8.63 � 7.25%), and the CMPC-alone group
(7.41 � 3.54%). As for the origin and role of the implanted BMSCs,
the GFP reporter gene expression in Lenti-LacZ-, Lenti-WT-, and

Fig. 7. Histological analysis of newly formed bone and remnant scaffold area in calvarial defects. The specimens were sliced, and sections were stained with van Gieson’s picro
fuchsin. From top to bottom: CMPC constructs, Lenti-LacZ-transduced BMSCs/CMPC constructs, Lenti-WT-transduced BMSCs/CMPC constructs, and Lenti-CA5-transduced BMSCs/
CMPC constructs (original magnification, 1.25�, 40�) (A). New bone formation area per 40� field in sections (B). There were significant differences between the WT or CA5 groups
and the CMPC or LacZ groups (**P < 0.01, target gene groups compared with the LacZ group or CMPC group). Remnant scaffold area per 40 � field in sections (C). There were
obviously differences between the WT or CA5 groups and the CMPC or LacZ groups (*P < 0.05, target gene groups compared with the LacZ group or CMPC group).
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Lenti-CA5-transduced groups and the stronger HIF-1a-positive
staining in the CA5- and WT-transduced groups suggested that
those donor cells had participated in the new bone formation. Thus,
the HIF-1a gene can effectively induce BMSCs to produce new bone
in bone defects in vivo. Furthermore, CA5 modified BMSCs group
achieved better result of the repair of CSD compared with WT
groups.

In this study, the degradation of implanted CMPC scaffold
materials was observed obviously but with different patterns in
those four groups. CMPC material demonstrated an accelerated
degradation in CA5 and WT groups, accompanying with more new
bone formation as compared to LacZ group or CMPC alone. The
trend is more obvious for CA5-transduced group in which the
largest newly formed bone area as well as the fastest CMPC
degradation rate were found among the groups. The previous
studies have suggested the degradation of CPC materials could be
due to osteoclast-mediated degradation [43]. Porous CPC could
create a permissive micro-environment of bone formation and
mineral resorption, such as the presence of osteoblasts and extra-
cellular matrix (ECM), which could facilitate osteoclasts adhesion
via different pathways [44,45]. CMPC, which was derived from CPC,
should go through similar mechanism for the degradation of
implanted scaffold materials. However, the in-depth mechanism
concerning to the degradation of materials would be evaluated
with longer observation time in larger animal models study in the
future.

One report has showed AdHIF-1a had been used to treat the
lower extremity of patients with critical limb ischemia [46]. In our
study, we do not find any evidence that the HIF-1a-overexpressing
BMSCs formed tumor during the 8 weeks observation in vivo. Of
course, a prolonged observation in vivo must be considered to
determine whether HIF-1a is safe if we use CA5 as a means of
clinical treatment in the future.

5. Conclusions

In summary, BMSCs modified by truncation mutanted HIF-1a
gene can promote osteogenesis in vitro and in vivo. CMPC could
serve as a potential substrate for HIF-1a gene-modified tissue
engineered bone for bone regeneration. This work provided more
options to further detect the role of HIF-1a in repairing large bone
defect with different mutant methods in the future.
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